Single-Molecule Dynamics at a Bacterial Replication Fork after Nutritional Downshift or Chemically Induced Block in Replication
نویسندگان
چکیده
منابع مشابه
Replication Fork Reversal after Replication–Transcription Collision
Replication fork arrest is a recognized source of genetic instability, and transcription is one of the most prominent causes of replication impediment. We analyze here the requirement for recombination proteins in Escherichia coli when replication-transcription head-on collisions are induced at a specific site by the inversion of a highly expressed ribosomal operon (rrn). RecBC is the only reco...
متن کاملDynamics of intracellular bacterial replication at the single cell level.
Several important pathogens cause disease by surviving and replicating within host cells. Bacterial proliferation is the product of both replication and killing undergone by the population. However, these processes are difficult to distinguish, and are usually assessed together by determination of net bacterial load. In addition, measurement of net load does not reveal heterogeneity within path...
متن کاملTwo essential DNA polymerases at the bacterial replication fork.
DNA replication in bacteria is carried out by a multiprotein complex, which is thought to contain only one essential DNA polymerase, specified by the dnaE gene in Escherichia coli and the polC gene in Bacillus subtilis. Bacillus subtilis genome analysis has revealed another DNA polymerase gene, dnaE(BS), which is homologous to dnaE. We show that, in B. subtilis, dnaE(BS) is essential for cell v...
متن کاملDNA replication at the single-molecule level.
A cell can be thought of as a highly sophisticated micro factory: in a pool of billions of molecules - metabolites, structural proteins, enzymes, oligonucleotides - multi-subunit complexes assemble to perform a large number of basic cellular tasks, such as DNA replication, RNA/protein synthesis or intracellular transport. By purifying single components and using them to reconstitute molecular p...
متن کاملPolymerase dynamics at the eukaryotic DNA replication fork.
This review discusses recent insights in the roles of DNA polymerases (Pol) delta and epsilon in eukaryotic DNA replication. A growing body of evidence specifies Pol epsilon as the leading strand DNA polymerase and Pol delta as the lagging strand polymerase during undisturbed DNA replication. New evidence supporting this model comes from the use of polymerase mutants that show an asymmetric mut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: mSphere
سال: 2021
ISSN: 2379-5042
DOI: 10.1128/msphere.00948-20